Providing a Model for Recommendation Systems of Information Resources in Iranian Library Software

Document Type : Original Article


1 MSc. in Knowledge and Information Science, Tehran, Iran.

2 Assistant professor, Department of Knowledge and Information Science, Faculty of Psychology and Education, Shahid Beheshti University, Tehran, Iran

3 Associate professor, Department of Knowledge and Information Science, Faculty of Psychology and Education, Shahid Beheshti University, Tehran, Iran.

4 Assistant professor, Department of Software and Information Systems, Faculty of Engineering and Computer Science, Shahid Beheshti University, Tehran, Iran


Objective: Users in the library software environment are immersed in a sea of ​​information and searching in this space is time-consuming and confusing for them. By searching for each keyword, the software identifies and displays many resources, and choosing the most appropriate and relevant source to the user's needs is another matter.
One of the major problems with library software is the loss of information in the software. Personalizing information and giving advice to users depends on storing data in the library system. For example, in the search section of many library softwares, there is no requirement to enter the users' personal page, and the system performs the search and retrieval of information without identifying the users. Recommending systems are created primarily to offer an option to the user in the search or selection process, thereby helping them to choose a better option. Therefore, the present research aims at providing a model for recommendation systems of information resources in Iranian library software.
Methodology: This study, in terms of the purpose, is an applied research. Descriptive survey method was used to evaluate the recommendation status of library software. Moreover, the system design method was utilized to suggest the recommendation pattern in library software. Data were gathered through in-depth and semi-structured interviews with managers and specialists of library software. The data were coded and extracted using the MAXQDA qualitative data analysis software.
Findings: Qualitative analysis of the interview results led to the identification of five main categories, 16 sub-categories, and their concepts. The findings showed that in the category of the current strategies of library software for the recommendation, traditional method of recommendation, defining relationship between records, relationship between topics, relationship between words, and defining the search refinement module have been utilized. Moreover, in the category of determining the level of familiarity with the recommender system, three categories of perfect familiarity (17%), brief familiarity (50%) and unfamiliarity (33%) were identified. In terms of the required facilities of the recommender systems, the sub-categories of technical, system, and specialized facilities (customization) were recognized, and its concepts were explained. The challenges of adding a recommender system in two categories of technical and non-technical challenges and their concepts were pointed out. In addition, the benefits of adding a recommender system were explained in three categories, namely the benefits for library members, for librarians, as well as for software companies. Also, the characteristics of the appropriate design pattern of the recommender system of the Iranian library software were identified and suggested.
Conclusion: The results of data analysis of interviews with managers and specialists of the Iranian library software companies showed that the companies are moving on the way to take advantage of modern technologies. They have implemented some requirements for the implementation of the recommender system in their software. Currently, the creation and completion of similarities between information resources have been allocated to librarians as their responsibility or designed based on search refinement techniques (like faceted search or clustering), which this section in software has the ability to become a recommender system. The results also showed that familiarity of managers and professionals of the companies with the recommender systems is moderate. Companies are needed to be aware of recommender systems based on the identified challenges and benefits of recommender systems in library software. Additionally, the pattern of recommender systems in the Iranian library software is designed and offered.


آسترکی، عاطفه (1392). ارائه یک سیستم پیشنهاددهنده کتاب با استفاده تکنیک‌های هوش مصنوعی و هستی شناسی. پایان‌نامه کارشناسی ارشد. دانشگاه آزاد اسلامی - واحد بروجرد، گروه مهندسی کامپیوتر.
اسماعیل‌پور، امیرحسین (1396). آشنایی با سیستم‌های توصیه‌گر و عملکرد آن‌ها. مجله اینترنتی صفر تا قهرمان: هوش مصنوعی و یادگیری ماشین.
پورقیومی، داریوش (1398). طراحی الگوریتم فرا ابتکاری جدید چند هدفه (برای سیستم‌های توصیه‌گر). شیراز: فرهنگستان ادب.
جان‌محمدی، فریبا (1397). بررسی وضعیت نظام‌های توصیه‌گر و قابلیت‌های شخصی‌سازی خدمات در نرم‌افزارهای کتابخانه‌های دیجیتالی ایران. پایان‌نامه کارشناسی ارشد. دانشگاه علامه طباطبایی، دانشکده روان‌شناسی و علوم‌تربیتی، گروه کتابداری و اطلاع‌رسانی.
ربی انگورانی، مهرداد؛ آبکار، سمیه (1397). مقدمه‌ای بر یادگیری ماشین: سیستم‌های توصیه‌گر هوشمند فیلترینگ مشارکتی. تهران: ناقوس.
غفاریان، سمانه؛ جلالی، مهرداد؛ باب‌الحوائجی، فهمیه؛ حریری نجلا؛ خادمی، مریم (1399). طراحی مدل خدمات شخصی‌سازی شده با رویکرد سامانه‌های توصیه‌گر در کتابخانه دیجیتال آستان قدس رضوی. کتابداری و اطلاع‌رسانی، 23(2)، 24-5.
غفاری، سعید؛ قاضی‌زاده، حمید (1397). کلیات داده‌کاوی در علم اطلاعات و دانش‌شناسی. تهران: اساطیر پارسی: چاپار.
مطاعی، سعید؛ رافع، رضا (1398). ساختار و مفاهیم سیستم‌های توصیه‌گر. تهران: ناقوس.
وکیلی، گلناز (۱۳۹۲). طراحی سیستم‌های توصیه‌گر در کتابخانه‌های دیجیتالی. مهدی علیپورحافظی (گردآورنده)، مجموعه مقالات نخستین کنفرانس ملی کتابخانه دیجیتالی: یک دهه کتابخانه‌های دیجیتالی در ایران با نگاهی به آینده، تهران: پژوهشگاه علوم و فناوری اطلاعات ایران‏‫.
Astraki, E. (2013). Provide a book suggestion system using artificial intelligence and ontology techniques. Master Thesis. Islamic Azad University - Boroujerd Branch, Department of Computer Engineering. (in Persian)
Ghaffari, S., & Qazi Zadeh, H. (2018). Generalities of data mining in information science and epistemology. Tehran: Persian mythology, Chapar. (in Persian)
Ghafarian, S., Jalali, M., Babolhavaeji, F., Hariri, N., & Khademi, M. (2020). Designing a Personalized Service Model with an Approach to Recommender System in Astan-e Quds-e Razavi Digital Library Software. Library and Information Sciences, 23(2), 5-24. (in Persian)
Jan Mohammadi, F. (2018). Investigating the status of recommender systems and service personalization capabilities in Iranian digital library software. Master Thesis. Allameh Tabatabai University, Faculty of Psychology and Educational Sciences, Department of Library and Information Science. (in Persian)
Jia, F., & Shi, Y. (2013) Library Management System Based on Recommendation System. In: Yang, Y., Ma, M., & Liu, B. (eds) Information Computing and Applications. ICICA. Communications in Computer and Information Science, vol 392. Springer, Berlin, Heidelberg.
Jomsri, P. (2014). Book recommendation system for digital library based on user profiles by using association rule. Fourth edition of the International Conference on the Innovative Computing Technology (INTECH 2014), 130-134.
Mohamed, M. H., Khafagy, M. H., & Ibrahim, M. H. (2019). Recommender Systems Challenges and Solutions Survey. International Conference on Innovative Trends in Computer Engineering (ITCE), 149-155.
Motaei, S., & Rafi, R. (2020) Structure and concepts of recommender systems. Tehran: Naghous. (in Persian)
Purqiumi, D. (2020). Design of a new multi-objective meta-heuristic algorithm (for recommender systems). Shiraz: Academy of Literature. (in Persian)
Rabbi Angorani, M., & Abkar, S. (2019). Introduction to Machine Learning: Intelligent Participatory Filtering Recommendation Systems. Tehran: Naghous. (in Persian)
Xu, C. (2017). A Personalized Recommender System Based on Library Database. International Journal of Emerging Technologies in Learning (iJET), 12(12), 134-141.
Vakili, G. (2013). Design of recommendation systems in digital libraries. Mehdi Alipour Hafezi (Collector), Proceedings of the First National Conference on Digital Library: A Decade of Digital Libraries in Iran Looking to the Future, Tehran: Iran Institute of Information Science and Technology. (in Persian)